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Vzorové riešenia 1. kola zimnej časti 2015/2016

1.1 Balistika (opravoval Marek Murín, vzorák Martin Gažo)

Tento príklad je interaktívny a jeho zadanie je len v elektronickej podobe, ktorú nájdete na našej

internetovej stránke https://ufo.fks.sk/.

Dúfame, že sa vám interaktívna úloha páčila, neskôr sa objavia aj ďalšie interaktívne
úlohy. Úloha bola rozdelená na viacero častí, poďme na to pekne po poriadku.

Časť 1. V prvej podúlohe máme určiť optimálny uhol pre zadaný polomer. Teda taký
uhol, pod ktorým doletí lopta so zadaným polomerom najdaľej. Nastavíme teda polomer
na hodnotu 3 a postupne meníme uhol od nuly až po 90°, napríklad po 10°. Získavame
takéto hodnoty:

Uhol Dostrel
10° 72,092
20° 118,072
30° 144,267
40° 153,695
50° 147,995
60° 128,254
70° 95,554
80° 51,616
90° 0,000

Tab. 1: Hodnoty pre hmotnosť nastavenú na 3

Môžeme si všimnúť, že optimálny uhol1 bude niekde okolo 40°. Ak chceme poznať
uhol lepšie, mali by sme zhustiť krok. Ale kde presne? Všimnite si, že aj keď sme namerali
najvyššiu hodnotu pri 40°, optimálny uhol može stále byť väčší, aj menší ako 40 stupňov.
Nemal by však už byť menší ako 30°, ani väčší ako 50°, keďže tam už závislosť očividne
klesá. V tomto rozsahu teda zhustíme krok – teda vyskúšame uhly medzi 30° a 50°,

1Na zopakovanie, to je ten, pri ktorom má lopta najväčší dolet.
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napríklad po 1°. Zistíme, že najďalej dostrelíme pri 41°. Ak chceme byť ešte presnejší,
vyskúšame uhly medzi 40° a 42° po 0,1°. Postupne tak dôjdeme tomu, že výsledný uhol
leží v intervale (41,0°; 41,3°).

Všimnime si, že keď sme postupne zväčšovali uhol od 0° po 90°, dostrel sa najprv
zväčšoval, až kým sme nedosiahli optimálny uhol a potom sa dostrel už iba zmenšoval.
Tento fakt môžeme využiť, keď budeme hľadať optimálny uhol v iných podúlohách. Vďaka
nemu totiž vieme veľmi ľahko zistiť, či je optimálny uhol väčší, alebo menší ako nejaká
hodnota. Ak nás napríklad zaujíma, či je optimálny uhol väčší, alebo menší ako 30°,
spustíme simuláciu pre 30° a pre 30,1°. Môžu nastať dva prípady:

(i) Ak sme ďalej dostrelili pri uhle 30°, znamená to, že optimálny uhol nemôže byť väčší
než 30,1° – keďže dostrel po zväčšení uhla klesol, tak sme buď už za optimálnym
uhlom a vzďaľujeme sa od neho, alebo je optimálny uhol niekde medzi 30° a 30,1°.

(ii) Ak sme ďalej dostrelili pri uhle 30,1°, optimálny uhol nemôže byť menší ako 30°,
z podobných dôvodov.

S pomocou tejto techniky vieme optimálny uhol nájsť podstatne rýchlejšie, než prvou
metódou.

Ďalšia podúloha je v podstate zovšeobecnením tej predošlej, máme zistiť graf závislosti
optimálneho uhla od polomeru lopty. Tu sa už skutočne oplatilo vedieť hľadať optimálne
uhly rýchlejšie. My sme zvolili krok polomeru 1, a tak sme získali 9 rôznych hodnôt pre
optimálny uhol. Tieto sme nakreslili do grafu, ktorý je na obr. 1.

 36

 38

 40

 42

 44

 0  2  4  6  8  10  12

op
ti

m
ál

n
y
 u

h
ol

 [
°]

polomer

Obr. 1: Graf závislosti optimálneho uhlu od polomeru

Čo tento graf znamená? Ako si môžete všimnúť, s rastúcim polomerom sa optimálny
uhol približuje k nejakému číslu (odborne hovoríme, že konverguje). Pri širšom rozsahu
polomerov by sme si všimli, že optimálny uhol konverguje k hodnote 45°. V živote je
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väčšinou pri hode loptou optimálny uhol už okolo 44 až 45 stupňov (nikdy nepresahuje
45°), no akonáhle hádžete ľahkou loptou, napríklad nafukovacou loptou do vody, optimálny
uhol klesá. Ak teda chcete dostreliť čo najďalej, s bežnými loptami sa snažte strieľať pod
uhlom 45°, pri ľahších loptách sa vám tento uhol oplatí ešte jemne zmenšiť.

Časť 2. Máme zistiť, ako vyzerá plocha miest, kam vie Samko dostreliť (kde všade
sa môže počas letu nachádzať vystrelená lopta). Budeme teda postupne meniť uhol od
0° až po 180° po nejakých malých dielikoch a čiary (ktoré sa tentoraz zaznamenávajú)
nám postupne približne označia hľadanú plochu. Celé to mohlo po niekoľkých výstreloch
vyzerať tak, ako na obrázku 2. Z týchto čiar už môžeme pomerne dobre odhadnúť, ako
bude vyzerať celá plocha.

Obr. 2: Po niekoľkých výstreloch Obr. 3: Celková plocha

Bonusom bolo určiť krivku ktorá túto oblasť ohraničuje. Dalo sa k tomu postupovať
rôzne, napríklad si na papier alebo v programe zistiť súradnice okrajov, tie si nakresliť
do grafu a z toho sa snažiť určiť, aká krivka by tomu zodpovedala. Práca s vhodným
programom túto činnosť výrazne spríjemňovala – mohli ste skúsiť body prekladať rôz-
nymi funkciami a vybrať tú, ktorá sa krivke najviac podobala. Alebo sa takáto vec dá aj
spočítať, no to sme od vás nečakali (napriek tomu, že to bolo v bonusovej časti).

Tak či onak, správnym výsledkom bola parabola, čo aj na pohľad vyzerá uveriteľne.

Časť 3. Nakoniec máme zistiť závislosť optimálneho uhla od sklonu roviny. Pri hľadaní
optimálneho uhla pre každý sklon roviny sa dalo postupovať obdobne ako v prvej úlohe.
Sklon meníme v rozumnom rozozstupe (napríklad 5° – čo zodpovedá 9-tim hodnotám
v grafe). Výsledky uvádzame rovno v grafe na obrázku 4.

3 otazky@fks.sk
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Obr. 4: Graf závislosti optimálneho uhlu od sklonu roviny

Z grafu sa dá vypozorovať, že všetky hodnoty ležia na jednej priamke! Aký neoča-
kávaný výsledok! Skúsme určiť, ako by mala vyzerať funkcia popisujúca túto závislosť,
označme ju f(α). Keďže sa jedná o lineárnu závislosť – funkcia má tvar f(α) = a · α+ b –
stačí nám určiť dva koeficienty: a a b. Pre α = 0 je dolet jasne f(0) = 45°, takže b = 45°.
Koeficient a zistíme z ďalšíeho bodu (najlepšie toho navzdialenejšieho, aby sme mali čo
najmenšiu chybu) ako a = 1

2
. Celková závislosť bude mať tvar

f(α) = 45°+
α

2
.

To, čo sme tu spravili, nazývame lineárna regresia alebo preloženie priamkou. V tomto
prípade to bolo ľahké, pretože všetky body naozaj tvorili priamku, no v skutočnosti bý-
vajú merania nepresné, a teda netvoria naozaj priamku. V takom prípade sa snažíme nájsť
priamku, na ktorej body ležia aspoň približne. Vtedy je už regresia zložitejšia a najjed-
noduchšie je ju spraviť pomocou počítača, napríklad použitím tabuľkového kalkulátora.

Odhadovanie, ako bude závislosť vyzerať pre klesajúcu rovinu, spravíme čo najjedno-
duchšie – budeme predpokladať, že závislosť je lineárna aj v záporných hodnotách. Ta-
kýto odhad závsilosti mimo nameraných hodnôt sa volá extrapolácia. Odhadovanie medzi

nameranými hodnotami sa volá interpolácia. Takže graf extrapolovanej a interpolovanej
závislosti by mal vyzerať tak, ako na obrázku 5.
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Obr. 5: Odhadovaný graf závislosti optimálneho uhlu od sklonu roviny

1.2 Ako odmerať meter? (opravovali Samo a Samo, vzorák Baklažán)

Jurko na narodeniny dostal vreckový nožík, všetkých päť dielov Stopárovho sprievodcu galaxiou a
desaťmetrový kus koľajnice. Na tom by rád vyznačil jednometrové dieliky. Ako na potvoru však nevie
nájsť žiadne pravítko, ani meter. Zato má k dispozícii 1 kg bravčového karé, zelenú fixku (ktorá
píše aj na koľajnice), presné stopky, teplomer, zrkadielko, desaťmetrovú sklenenú rúru, tri dvojlitrové
plastové fľaše, plastelínu, rebrík so siedmimi šteblíkmi, zdroj vody (kohútik), spomínaný nožík a päť
dielov Stopára a kamarátov Janka a Samka, ktorí mu ochotne pomôžu. Je slnečno a teplomer ukazuje
24◦C. Pomôžte Jurkovi a navrhnite spôsob, ktorým by pomocou vymenovaných predmetov mohol
vyznačiť metrové dieliky na koľajnici.

Táto úloha mala viacero riešení, tu si ukážeme len niektoré z nich.

Riešenie prvé: čapovanie vody V tomto riešení využijeme, že poznáme dĺžku skle-
nenej rúry. Rúru dáme do zvislej alebo šikmej polohy (môžeme napríklad jeden jej koniec
podložiť knihami) a jej spodný koniec zapcháme (napríklad plastelínou, alebo kamará-
tovou dlaňou). Následne začneme do horného konca pomaly liať vodu. Ak budeme liať
vodu rovnomerne (teda za rovnaký čas nalejeme do rúry vždy rovnako veľa vody), hla-
dina vody v rúre bude tiež stúpať rovnomerne. Keď teda pomocou stopiek odmeriame,
ako dlho trvalo naplnenie celej desaťmetrovej rúry vodou, ľahko vypočítame, za aký čas
sa naplnila jedna desatina rúry (a teda za aký čas stúpla hladina vody o jeden meter) –
bude to jedna desatina celkového času plnenia rúry. Tento čas si označme t.

Potom rúru vyprázdnime, znovu zapcháme jej spodný koniec a znovu do vrchného
konca začneme liať vodu, s rovnakým prietokom ako pri prvom nalievaní. V nejakom
okamihu si na rúre fixou urobíme značku na mieste, kde je práve hladina vody a spustíme
stopky. Počkáme čas t a urobíme ďalšiu značku, opäť na mieste, kde je práve hladina. Na
rúre budeme mať dve značky vzdialené od seba jeden meter, môžeme ju teda použiť ako
pravítko a vyznačiť s jej pomocou metrové dieliky na koľajnici.

5 otazky@fks.sk
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Ostáva nám ešte vymyslieť, ako docieliť, aby sme vodu do rúry liali rovnomerne. Ak
do rúry vieme liať vodu priamo z kohútika, je to jednoduché – na začiatku pustíme vodu,
a potom s kohútikom nehýbeme, aby voda tiekla stále s rovnakým prietokom. Ak takúto
možnosť nemáme, môžeme napríklad do jednej z fliaš v spodnej časti urobiť pomocou
nožíka dieru, následne fľašu naplniť a stále do nej dolievať vodu tak, aby bola vždy plná.
Keďže hladina vody vo fľaši bude stále rovnaká, z diery bude voda striekať stále rovnako.

Riešenie druhé: tieň rebríka Toto riešenie využíva, že priečky2 sú na rebríku v rov-
nomerných rozostupoch. Funguje iba ráno a večer, keď je Slnko nízko nad obzorom a
tiene sú dlhé. Ak náhodou práve nie je práve takáto časť dňa, môžeme si čakanie na ňu
spríjemniť čítaním Stopára, jedením bravčového karé alebo modelovaním z plastelíny.

Koľajnicu položíme na zem tak, aby smerovala k Slnku (teda zhruba vo východozá-
padnom smere). Pri jej konci, ktorý je bližšie k Slnku, vztýčime rebrík tak, aby vrhal tieň
na koľajnicu. Vhodne ho posunieme a nakloníme, aby na začiatok koľajnice dopadal tieň
prvej priečky odspodu a na koniec koľajnice tieň šiestej priečky. Tiene druhej až piatej
priečky nám na koľajnici vyznačia dvojmetrové dieliky, tie označíme aj fixou. Koľajnicu
teda máme rozdelenú na päť dvojmetrových kusov, každý z nich ešte potrebujeme rozdeliť
na polovicu.

Zopakujeme ten istý trik: tentoraz umiestnime rebrík tak, aby bol tieň prvej priečky
na začiatku koľajnice a tieň siedmeho na značke šesť metrov od začiatku. Tiene ostatných
priečok nám prvých šesť metrov koľajnice rozdelia na metrové kusy, ktoré označíme fixou.
Nakoniec ešte rebrík posunieme tak, aby prvá priečka vrhala tieň na značku štyri metre
od začiatku, siedma priečka na koniec koľajnice a povyznačujeme aj zostávajúce značky.

Pri tomto riešení sme sa tvárili, akoby boli tiene priečiek tenké čiary, čo ale v sku-
točnosti nie je pravda. Tento problém vyriešime jednoducho: namiesto „tieňa priečky“
budeme vždy brať do úvahy spodnú hranicu3 tohoto tieňa.

A aby sme nezabudli: ak sa vám náhodou nechce manipulovať s koľajnicou vážiacou
niekoľko stovák kilogramov, môžete dieliky najprv vyznačiť na sklenenej rúre a potom ju
použiť ako pravítko.

1.3 Padajúce balóny (opravoval a vzorákoval Dušan)

Viete ako závisí čas pádu balóna od jeho polomeru? Že nie? Tak to teraz napravíme! Zoberte si
balón a nafúknite ho postupne na aspoň päť rozumne rôznych polomerov.4 Následne pre každý
polomer odmerajte čas pádu balóna z dvoch metrov na zem. Meranie opakujte aspoň trikrát pre
každý z piatich polomerov a následne merania pre tie isté polomery spriemerujte.

Polomer môžete zmerať tak, že špagátom najprv odmeriate obvod balóna, a potom si s prižmúre-
nými očami poviete, že balón je vlastne guľa. Nezabudnite odhadnúť možné chyby merania a popísať
možné zdroje nepresnosti.

Ešte pred tým, než začneme merať experiment, by sme sa mali zamyslieť nad tým, aké
výsledky môžeme očakávať. Jediné, čo budeme v experimente meniť, je veľkosť balóna.
Zo skúsenosti vieme, že čím väčší je pohybujúci sa predmet, tým väčší odpor mu kladie
vzduch. Tiež je ale pravda, že ťažšie predmety odpor vzduchu spomaľuje menej, než ľahšie

2V zadaní šteblíky, za lingvistickú vložku zemlínsko-šariškého nárečia ďakujeme vedúcim z východu.
3To je tá najbližšie k rebríku.
4Dobrý nápad je napríklad skúsiť balón nafúknuť skoro až do prasknutia, a potom z neho postupne

vyfukovať tak, aby sa polomer zmenšoval približne o rovnakú dĺžku.

6 otazky@fks.sk



Vzorové riešenia 1. kola zimnej časti

l [cm] r [cm] t1 [s] t2 [s] t3 [s] t̄ [s]
42 6,68 1,0 1,1 1,0 1,03
46 7,32 1,2 1,3 1,1 1,20
50 7,96 1,4 1,4 1,3 1,37
54 8,56 1,4 1,6 1,8 1,60
58 9,23 1,9 1,8 2,1 1,93

Tab. 2: Namerané časy pádov z 2 metrov v závislosti od veľkosti balóna

predmety rovnakej veľkosti a tvaru. To však v našom prípade nie je dôležité, keďže viac
nafúkaný balón nie je o nič ťažší, než menej nafúkaný balón 5. To teda znamená, že väčšie
balóny by mali padať dlhšie ako menšie.

Keď už máme všetko rozmyslené, pustime sa do experimentu. Tak ako hovorí zadanie.
Vezmeme balón a nafúkneme ho. Zmeriame obvod, čiže aj polomer, špagátom a pustíme
balón z výšky dvoch metrov. Toto zopakujeme trikrát pre päť rôznych veľkostí. My sme
dostali takéto výsledky:

V tabuľke máme namerané hodnoty, pričom l je obvod balóna, r =
l

2π
je polomer

balóna, a t̄ =
t1 + t2 + t3

3
je priemerný čas pádu.
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Obr. 6: Graf závislosti priemerného času padania balóna od jeho polomeru

Často sa opatí vyniesť namerané hodnoty do grafu, aby sme naozaj videli, aké závislosti
sme namerali. V našom prípade to nebolo nič komplikované, no aj tak je oveľa lepšie vidieť,
že čím väčší máme balón, tým dlhšie padá.

5Mohli by ste tvrdiť, že keď balón viac nafúkame, bude ťažší, lebo aj vzduch v ňom má nenulovú
hmotnosť. Argument je síce pravdivý, avšak tiaž vzduchu v balóne sa vykompenzuje tým, že na väčší
balón pôsobí vo vzduchu väčšia vztlaková sila.

7 otazky@fks.sk
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Ostáva posledná vec, a to zamyslieť sa nad presnosťou nášho merania. Keď sa pozrieme
na namerané údaje, môžeme s určitosťou povedať, že reálna hodnota, ktorú by sme v ide-
álnom prípade mali namerať, sa od priemernej nelíši o viac ako 0,2 s. Tento horný odhad
nám bez problémov stačí, keďže rozdiely medzi priemernými hodnatami sú na tej istej
úrovni. Hlbšiu štatistiku tu robiť nebudeme.

Ešte zaujímavejšia záležitosť sú zdroje našej nepresnosti merania. V prvom rade tu je
nesymetrickosť balóna. Raz ho pustíme nafukovacím otvorom nadol, raz nahor, jednodu-
cho vždy inak. V závislosti od tejto počiatočnej podmienky bude náš balón padať rôzne.
Keď sa na jeho pád pozriete, zistíte, že padá skôr ako pierko plachtiace vzduchom, než
ako bowlingová guľa. Ďalším zdrojom nepresností je náš reakčný čas pri mačkaní stopiek.
Ak pád neanalyzujeme z videa, tak v nejakých tých stotinách až desatinách sekúnd budú
rozdiely. No a v neposlednom rade tu je meranie obvodu balóna. Pochybujem, že sa nie-
komu podarí odmerať obvod balóna presne v strede, keďže je to skôr šiška. Preto, ak to
nie je maximálny, ani minimálny obvod, tak je to dobre. Čo sa týka nepresnosti meracích
prístrojov, ako sú pravítko a stopky, tak tá je oveľa menšia, ako nepresnosti spôsobené
vyššie spomínanými zdrojmi.

To je z experimentálky všetko a tešíme sa, že vás experimenty stále bavia.

1.4 Netradičný radiátor (opravoval Paťo, vzorák Katka Kmeťová)

U nás sa obyčajne používajú radiátory, ku ktorým vedú dve rúry: jednou priteká horúca voda a druhou
odteká chladnejšia voda. Samašec však nedávno videl radiátor, ku ktorému viedla iba jedna rúra, a
to iba zospodu, inak vyzeral radiátor úplne normálne. Nejako mu to nedalo a tak sa začal zamýšlať,
ako vlastne takýto radiátor môže fungovať. Čo teda radiátorom prúdi? Ako to, že to môže prichádzať
aj odchádzať tou istou rúrou a napriek tomu radiátor hreje?

Obr. 7: Radiátor

Ohrievadlo v radiátore má jednou rúrou vojsť dnu aj vyjsť von. Vnútri sa teda musí
niečo zmeniť – prečo inak by to najprv išlo jedným a potom druhým smerom? No a načo
máme radiatór? Aby nás ohrieval. Teda odovzdával nám svoju energiu. Keďže platí zákon
zachovania energie, ohrievadlo sa pri tom musí ochadzovať.

Jedna z vlastnotí látok, ktoré sa menia na základe teploty, je skupenstvo. Poznáme
plynné, kvapalné a tuhé. Pre každú látku máme tabuľkovú hodnotu teploty, ktorú keď
táto látka dosiahne, zmení sa z kvapaliny na plyn. Tento jav voláme vyparovanie. Naopak,
keď klesne teplota látky pod túto hodnotu, látka zkondenzuje. To znamená, že sa zmení
z plynu na kvapalinu. Túto hodnotu voláme teplota vyparovania.

8 otazky@fks.sk
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Čo keby do radiátora prichádzalo ohrievadlo v plynnom skupenstve a odchádzalo v kva-
palnom skupenstve? To by dokonca fungovalo aj s vodou, ktorá je aj v dvojrúrovom
radiátore. Teplota vyparovania vody pri atmosférickom tlaku je približne 100 ◦C.

Vo forme vodnej pary voda stúpa rúrou až príde do radiátora. Tam sa ochladí, skon-
denzuje, vytvorí kvapky na stenách rúr radiátora a stečie späť dole.

Nie vždy sa jej podarí stiecť až úplne dole, môže sa jej cestou stať že sa znova zohreje
a stane sa z nej vodná para.

1.5 Lyžovačka (opravoval Jarka, vzorák Paťo)

Jožko sa bol v zime lyžovať na svahu s kotvovým vlekom. Keď čakal v rade na vlek, všimol si, že
voľná kotva prichádza raz za 5 sekúnd. Tiež si odstopoval, že cesta vlekom na vrch kopca mu trvala
presne jednu minútu. Po tom, čo vystúpil z vleku, sa spustil nadol konštantnou rýchlosťou. S lyžiarmi
idúcimi vlekom nahor sa pri tom míňal raz za 2 sekundy. Ako dlho Jožkovi trvala cesta nadol?

Aby sme sa v príklade vedeli dobre orientovať, všetky veličiny si prehľadne označíme
písmenkami. Rýchlosť vleku si označme u a časový interval medzi príchodmi dvoch kotiev
t1 = 5 s. Keďže kotvy prichádzajú v pravidelných časových rozostupoch, nie je ťažké
si predstaviť, že aj ich vzájomné dĺžkové rozostupy (vzdialenosti medzi kotvami) budú
rovnaké. Dĺžkový rozostup nazveme d a na základe predošlých viet platí d = ut1.

Ďalej si označme vzdialenosť medzi stanicami vleku ako D. Keďže Jožko odstopoval,
že rýchlosťou u sa dostane na vrch kopca za čas T1 = 1min, platí D = uT1 (podobne ako
v predošlom prípade).

Ešte si potrebujeme vymyslieť označenie pre tri veličiny. Rýchlosť, ktorou sa Jožko
spúšťa dolu z kopca, si označme ako v a čas, za ktorý sa z kopca spustí, ako T2 (všimnite
si, že tento čas potrebujeme vypočítať). Opäť podobne, ako v predošlom prípade, musí
platiť D = vT2.

Nakoniec si ešte označme dvojsekundový interval, v ktorom Jožko stretáva lyžiarov na
vleku ako t2.

Vyzerá to beznádejne. Práve sme si označili kopu (osem) premenných, ale zadané
máme len tri (t1 = 5 s, t2 = 2 s a T1 = 1min). Nutne preto musíme nájsť nejakú rovnicu,
ktorá premenné zväzuje dokopy.

Pozrime sa preto bližšie na to, čo sa deje počas toho, ako Jožko cestou dole svahom
stretáva oprotiidúcich lyžiarov na vleku. Jožko vidí na vleku lyžiarov, ktorí sú od seba
vzdialení d a približujú sa k nemu vždy rýchlosťou (u + v) (protiidúce rýchlosti sa sčíta-
vajú). Inak povedané, v momente, kedy Jožko míňa nejakého lyžiara, najbližší lyžiar je
od neho vzdialený d, pohybuje sa rýchlosťou (u+ v) a Jožka minie za čas t2. Nutne teda
musí platiť vzťah d = (u+ v)t2.

Toto vyjdarenie pre d a vyjadrenie z druhého odstavca môžeme dať navzájom do
rovnosti:

ut1 = (u+ v)t2 .

Rovnicu môžeme upraviť tak, že z nej vyjadríme pomer u/v (vyskúšajte si):

u

v
=

t2
t1 − t2

.

Rovnako postupujeme aj v prípade dvoch vyjadrení pre D, nachádzajúcich sa v treťom
a štvrtom odstavci:

uT1 = vT2 .
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Z tejto rovnice si vyjadríme hľadaný čas T2 (opäť si skúste):

T2 =
u

v
T1 .

Zostáva dosadiť za u/v z predošlej rovnice:

T2 =
t2

t1 − t2
T1 =

2 s

5 s− 2 s
· 60 s =

2

3
· 60 s = 40 s .

Aj s minimom známych informácií sme teda dokázali vypočítať, že Jožkovi bude cesta
nadol trvať presne 40 s.
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