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Riešenia 3. kola zimnej časti

3.1 Samkov cyklus vzorák Marianka, opravovala Marianka

Najskôr si poďme premeniť Samkove rýchlosti na základné jednotky.

27 km
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s
,
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Teraz si veľmi jednoducho vypočítame, akú vzdialenosť prešiel pri týchto dvoch rôznych rýchlostiach. Použi-
jeme pri tom vzorec s = v ⋅ t.

Na začiatku išiel 20 s rýchlosťou 7,5 m
s .

s1 = 7,5
m
s
⋅ 20 s = 150 m.

Keď Samko prestal vládať, tak išiel 60 s rýchlosťou 4,1666 m
s .

s2 = 4,1666
m
s
⋅ 60 s = 250 m.

Vieme, že Samko takto opakoval svoj akceleračný cyklus, až kým nedošiel ku cieľu, ktorý je vzdialený 5 km =
5000 m. Keď si zrátame vzdialenosti s1 + s2, tak nám udávajú vzdialenosť, ktorú prešiel za jeden celý cyklus.
Cykly sa stále opakujú, takže nám stačí zistiť koľkokrát sa cyklus zopakoval a vieme zistiť ako dlho mu trvala
cesta ku cieľu.

150 m + 250 m = 400 m,

5000 m
400 m

= 12,5 cyklu.

Intuitívne by sme si mohli povedať, že nám teraz stačí dať celkový čas za celý cyklus 12,5 krát, čo by bolo 1000 s.
Lenže takto to presne nefunguje. Rozdeľme si tieto cykly na 12 cyklov a 0,5 cyklu. Keď máme 12 cyklov, tak
nám stačí vynásobiť celkový čas cyklu dvanástimi.

80 s ⋅ 12 = 960 s.

S polovičným cyklom je to trošku ťažšie. Najskôr si potrebujeme zistiť, koľko metrov nám ostalo do cieľa. To
zistíme ako 5000 m − 12 ⋅ (s1 + s2).

5000 m − 12 ⋅ 400 m = 200 m.

Samko teraz začína 13. cyklus, takže najskôr ide 20 s rýchlosťou 7,5 m
s . Už vieme, že takto prejde 150 m. To

znamená, že mu ostane posledných 50 m, ktorých prejde rýchlosťou 4,1666 m
s . Z toho vieme ľahko zistiť, ako
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dlho mu to trvalo.
50 m

4,1666 m
s
= 12 s.

Už nám stačí iba zrátať všetky časy a máme výsledok :).

960 s + 20 s + 12 s = 992 s.

3.2 Vodné hrátky vzorák Jarka, opravovala Jarka

Najprv sa pokúsime zistiť, koľko molekúl vody sa nachádza v jednom pohári. Na to budeme potrebovať ve-
ličinu, ktorá sa volá molárna hmotnosť. Tá nám udáva hmotnosť v gramoch jedného mólu, čo je základná
jednotka látkového množstva. Ešte budeme potrebovať Avogadrovu konštantu, ktorá nám hovorí, koľko čas-
tíc tvorí jedenmól. Zo zadania vieme, že pohár s vodoumá objem 2 dl. Z hustoty vody vieme, že voda v pohári
má hmotnosť 200 g. Z periodickej tabuľky (alebo vyhľadaním na internete) zistíme, že molárna hmotnosť vo-
dy je 18 g

mol . Avogadrova konštanta má hodnotu 6,022 × 1023 1
mol . Z týchto hodnôt zistíme počet molekúl v

pohári:

Npohár =
200 g ⋅ 6,022 × 1023 1

mol

18 g
mol

≈ 6,69 × 1024

Ešte potrebujeme vypočítať počet molekúl vody na celej Zemi. Najprv na internete nájdeme potrebné údaje.
Podľa Wikipédie je na Zemi 1,386 × 109 km3 vody, čo je 1,386 × 1024 g. Počet molekúl určíme rovnakým
spôsobom:

NZem =
1,386 × 1024 g ⋅ 6,022 × 1023 1

mol

18 g
mol

≈ 4,64 × 1046

Vypočítame, akú čast všetkých molekúl vody na Zemi tvoria molekuly, ktoré boli v Terkinom a Mariankinom
pohári, a z toho už ľahko vypočítame aj priemerne koľko z týchto molekúl mali v pohári ich (pra)100vnúčence:

Npohár

NZem
Npohár ≈ 965

3.3 Marekova obľúbená fľaša vzorák Jaro, opravoval Jaro

Majme fľašu s vodou, ktorej hladina je vo výškeH. Nech sú vo fľaši dierky v rôznej výške. Najskôr sa zamyslime
nad tým, ako by mala vyzerať vzdialenosť dostreku d od výšky dierky z odo dna.

Čím je dierka hlbšie, tým je voda vystrekovaná pod vyšším tlakom, a teda vyššou rýchlosťou. Ak by bola dierka
tesne pod hladinou, tak by voda pozvoľna vytekala, a teda by dostrekla do vzdialenosti presne 0 m. Na druhej
strane, čím je hlbšie, tým je bližšie k podložke, na ktorú vyteká, a teda jej trvá kratšie, aby na ňu dopadla.
V limitnom prípade, keď je dierka tesne pri dne, tak voda prakticky okamžite dopadne na podložku, čím je
jej dostrek opäť 0 m. To znamená, že niekde medzi týmito dvomi limitnými polohami sa bude nachádzať
maximum.

Môžeme si urobiť aj kvantitatívnu predpoveď. Uvažujme dierku vo výške z odo dna. Pre výtokovú rýchlosť platí
Torricelliho vzorec v =

√
2gh, kde h = H − z je výška hladiny nad dierkou.1 Voda vyteká z dierky vodorovne,

1Dá sa to ľahko odvodiť zo zákona zachovania energie. Uvažujme malý kúsok kvapaliny s hmotnosťou m. Ten má pri opúšťaní
nádoby kinetickú energiu Ek = 1

2mv2. Jeho miesto v nádobe zaberie kúsok kvapaliny, ktorý bol nad ním, miesto tohto kúska kúsok,
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čiže vykonáva vodorovný vrh, pre ktorého dĺžku platí d = v
√

2z
g . Vylúčením výtokovej rýchlosti dostávame2

d = 2
√
z (H − z).

Teraz už môžeme pristúpiť k meraniu. Namiesto fľaše použijeme nádobu valcového tvaru, pre ktorú sa bude
jednoduchšie určovať dostrek, keďže všetky dierky budú presne nad sebou. Hladinu vody budeme mať vo
výške H = 20 cm. Urobíme si tam značku, po ktorú budeme vodu vždy dopĺňať. Do nádoby si pripravíme
dierky, pričom ich vzdialenosť volíme podľa toho, ako presne chceme výšku maximálneho dostreku určiť. My
volíme dierky vo výškach z1 = 5 cm, z2 = 7,5 cm, z3 = 10 cm, z4 = 12,5 cm a z5 = 15 cm. Všetky dierky
prelepíme lepiacou páskou. Takto upravená nádoba je pripravená na meranie. Ešte si na podlahu umiestnime
štvorčekový papier, ktorý nám zjednoduší odčítavanie dostreku.

Meranie bude prebiehať nasledovne. Vodu v nádobe doplníme po značku. Nádobu umiestnime na okraj štvor-
čekového papiera a jednu dierku odlepíme. Uvedomme si, že voda dostrekne najďalej v prvommomente, preto
nemusíme čakať, kým všetka voda vytečie. Jednoducho si všimneme, kde voda dopadla v prvom momente a
v tejto vzdialenosti si na papier položíme zápalku. Potom dierku opäť zalepíme a odčítame vzdialenosť zá-
palky od nádoby. Meranie opakujeme pre každú dierku päťkrát. Pred každým meraním podlahu dôkladne
vyutierame a použijeme suchý štvorčekový papier.

Obrázok 1: Vykonávanie merania

Namerané dáta sú zapísané v tabuľke. Strednú hodnotu dostreku pre každú výšku vypočítame ako obyčaj-
ný aritmetický priemer. Smerodajnú odchýlku zase tak, že nájdeme, ako sa každá nameraná hodnota líši od
priemernej hodnoty, vypočítame druhé mocniny týchto rozdielov a sčítame ich. Potom tento súčet predelíme
počtom meraní krát počtom meraní mínus jedna a na záver z toho urobíme odmocninu. Matematicky zapí-

ktorý bol nad ním, a tak ďalej. Efektívne tak ubudne kúsok z hladiny, a teda zmena potenciálnej energie bude Ep = −mgh. Celková
zmena energie má byť nulová, preto 1

2mv2 = mgh, odkiaľ v =
√

2gh.
2Dá sa ukázať, že tento výraz dosahuje maximum pre z = H

2 . Vyžaduje si to ale použitie netriviálnej matematiky, preto to nebu-
deme robiť. Rovnako sa časom naučíte, že uvedená rovnica je rovnicou polkružnice, preto budeme očakávať, že namerané hodnoty
na grafe vytvoria polkružnicu, odkiaľ je už zrejmé, že maximum by malo byť v polovičnej výške. Ale nepredbiehajme…
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sané σ =
√

1
n⋅(n−1) ∑

n
i=1 (di − d)

2
, kde d = 1

n ∑
n
i=1 di je spomínaná stredná hodnota dostreku.3 Ukážme si to na

príklade výšky z3 = 10 cm. Stredná hodnota dostreku je d = 1
5 (14 + 13 + 14.5 + 14 + 15) = 14,1 cm a smerodaj-

ná odchýlka σ =
√

1
5⋅4 [(14 − 14.1)2 + (13 − 14.1)2 + (14.5 − 14.1)2 + (14 − 14.1)2 + (15 − 14.1)2] ≐ 0,33 cm.

Tabuľka 1: Namerané dáta, stredné hodnoty, smerodajné odchýlky

Výška dierky z 15,0 cm 12,5 cm 10,0 cm 7,5 cm 5,0 cm

1. meranie 6,5 cm 8,5 cm 14,0 cm 12,5 cm 11,5 cm
2. meranie 6,0 cm 9,0 cm 13,0 cm 13,0 cm 10,0 cm
3. meranie 7,0 cm 10,0 cm 14,5 cm 12,0 cm 10,5 cm
4. meranie 5,5 cm 8,0 cm 14,0 cm 12,5 cm 12,0 cm
5. meranie 6,0 cm 9,5 cm 15,0 cm 11,5 cm 11,5 cm
Stredná
hodnota d

6,2 cm 9,0 cm 14,1 cm 12,3 cm 11,1 cm

Smerodajná
odchýlka σ

0,25 cm 0,35 cm 0,33 cm 0,25 cm 0,37 cm

Na záver si vypočítané stredné hodnoty aj s príslušnými odchýlkami vykreslíme do grafu ako funkciu výšky
dierky. Zobrazené body v grafe pospájame čiarou a z grafu odhadneme výšku dierky, pre ktorú je dostrek
maximálny. Vidíme, že maximálnemu dostreku zodpovedá výška okolo z = 10 cm, čo zodpovedá našim oča-
kávaniam. Už trochu menej zodpovedá našim očakávaniam veľkosť tohto maximálneho dostreku. Predpokla-
daný dostrek podľa teoretickej závislosti je totiž zobrazený na grafe bodkovanou čiarou a namerané hodnoty
ležia výrazne nižšie. Je to spôsobené niekoľkými faktormi. V prvom rade sme zanedbali odpor vzduchu, takže
skutočný dostrek je kratší než predpovedaný. Ďalej úlohu zohráva aj presný tvar a veľkosť dierok, ktoré určite
neboli všetky úplne identické. Ďalej Torricelliho vzťah platí len približne – presne platí len vtedy, ak je dierka
nekonečne malá, resp. hladina nekonečne veľká. Okrem toho úlohu mohlo zohrávať aj povrchové napätie, v
dôsledku ktorého bola voda pri vytekaní mierne pribrzďovaná.

Obrázok 2: Nameraná závislosť dostreku vody od výšky dierky

3Výraz∑n
i=1 xi je ekvivalentný výrazu x1 + x2 + ⋅ ⋅ ⋅ + xn
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Komentár od opravovateľa

Všetky odovzdané riešenia mali jeden spoločný nedostatok – v úvode chýbal teoretický rozbor. Netreba sa
toho vôbec báť. Obzvlášť ak je podobne ako v tomto prípade fyzika skúmaného javu pomerne jednoduchá.

Spísanie teórie je dôležitou súčasťou riešenia. V prvom rade si totiž treba ujasniť, čo idem merať. A rovnako
to treba vysvetliť aj prípadnému čitateľovi vášho riešenia.

Okrem toho spracovanie teórie napomáha správnemu navrhnutiu experimentu. Konkrétne v tomto prípade
nám dá predstavu o tom, kde sa hľadané maximum zhruba nachádza, a my vieme, že dierky do fľaše máme
robiť hlavne v tejto oblasti. Na záver sa potom treba vrátiť k teórii, výsledky meraní s ňou porovnať a pokúsiť
sa vysvetliť prípadné rozdiely.

Musím pochváliť Lukáša, ktorý ako jediný dostatočne teoreticky vysvetlil a matematicky popísal skúmaný jav.
Aj keď treba priznať, že to tiež nebolo úplne ideálne, lebo tak urobil až po vykonaní experimentu, keď sa mu
nepozdávali výsledky, ktoré dostával.

3.4 Klamlivé lavičky vzorák Lukáš O., opravoval Lukáš O.

Aby sme vedeli vysvetliť to, čo Jaro pociťuje, musíme troška nahliadnuť do sveta biológie a vysvetliť, ako Jaro
vníma teplotu. Naše nervy reagujú okrem samotnej teploty aj na to, ako rýchlo nám do tela prichádza tepelná
energia, či ako rýchlo odchádza. Preto, keď teplo z nášho tela odchádza rýchlo, cítime to ako väčší chlad, než
keď teplo uniká pomaly. To isté platí aj keď teplo prichádza.

Pozrime sa teda na naše dva materiály, z ktorých sú lavičky vyrobené: Kov a drevo. Keď sa dotkneme kovovej
lavičky, teplo z nášho tela, ktoré je teplejšie ako lavička, sa začne rýchlo prenášať na kovovú lavičku. Naše nervy
toto pociťujú ako rýchly únik tepla, teda pociťujeme chlad. U dreva je však tento tepelný presun pomalší,
nepociťujeme to teda tak intenzívne. Inak povedané: Drevo je lepší tepelný izolant ako kov. Prečo však?
Pre kov je charakteristické práve to, že jeho valenčné elektróny sú voľné, čo znamená, že voľne “pobehujú” po
kovovom telese. Keď sa do kovu dostane tepelná energia, toto teplo sa presunie aj na tieto vodivostné elektróny.
No a keďže sú voľné, vedia získané teplo veľmi rýchlo šíriť. Drevo takúto schopnosť nemá, jeho tepelná vodivosť
je rádovo menšia.

Ešte sa pozrime na tepelnú kapacitu. Napriek tomu, že ju má drevo vyššiu, pociťujeme ho ako teplejšie. To
preto, lebo tepelná kapacita je číslo, ktoré nám uvádzamnožstvo potrebnej energie na to, aby sme látku zohriali
o jeden stupeň. Lenže uvedomme si, že keď sedíme na lavičke, zohrievame len tú časť, ktorej sa bezprostredne
dotýkame. Takže aj keď na zohriatie drevenej lavičky potrebujeme viac tepla, toto teplo zostáva v mieste, na
ktorom sedíme, zatiaľ čo v prípade kovovej lavičky je toto teplo rýchlo odvádzané do celého objemu vďaka
vysokej tepelnej vodivosti. Čiže rozdiel je v tom, že v prípade drevenej lavičky musíme zohriať len tú časť, na
ktorej sedíme, kým v prípade kovovej lavičky efektívne zohrievame celú.

3.5 Odvážiš sa? vzorák Lukáš G., opravoval Lukáš G.

Najskôr by sme sa mali zamyslieť nad otázkou, prečo nám pozemská váha ukázala na Europe menšiu hodnotu
ako na Zemi. Naša hmotnosť sa totižto nemôže len tak zmeniť (teda, jedine že by sme sa poriadne najedli alebo
držali diétu), a preto zmena hmotnosti nebude dôvodom rozdielnych hodnôt na váhe na Zemi a na Europe.
Bude v tom teda nejaký iný fígeľ. Aby sa nám ho však podarilo nájsť, musíme chápať, ako taká váha funguje.

Princíp určovania hmotnosti na váhe

Ak sa teleso s hmotnosťou m nachádza v tiažovom poli Zeme, tak vieme, že naň pôsobí tiažová sila
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FG = mg.

Ak sa teda postavíme na váhu, pôsobíme na ňu tiažovou silou, a teda dochádza k deformácii. Princíp váhy v
jednoduchosti spočíva v tom, že určí veľkosť deformácie a na základe toho vie určiť, aká veľká tiažová sila na
ňu pôsobí4. No a z veľkosti tiažovej sily už vieme určiť hmotnosť predelením gravitačným zrýchlením5.

Kde je teda problém?

Už sme zistili, ako funguje váha, preto by sa zišlo sa zamyslieť, prečo nám na Európe ukázala menšiu hodnotu.
Uvedomme si, že váha je stavaná na pozemské prostredie, kde je gravitačné zrýchlenie g ≈ 9,81 m

s2 . Na Europe
ale možno bude gravitačné zrýchlenie iné ako na Zemi. Potom by aj gravitačná sila, ktorou pôsobíme na váhu
bola rôzna, a preto by nám váha mohla ukazovať rôzne výsledky. Teraz prichádza na rad článok o gravitačnom
zákone, ktorý sme vám odporučili. V ňom ste sa mohli dočítať, že dve telesá vo vzdialenosti r, ktoré majú
hmotnosti M a m, na seba vzájomne pôsobia gravitačnou silou, ktorej veľkosť je

Fg = κ
Mm
r2

,

kde κ ≈ 6,674 × 10−11 m3

kgs2 je gravitačná konštanta6. Tento vzorec platí všeobecne, teda by mal platiť aj pre našu
Zem. Na domácu úlohu si to môžete overiť. Keďže ale poznáme vzorec na výpočet tejto sily, stačí už len zistiť
hmotnosť Europy a jej polomer, a vieme vypočítať gravitačnú silu, aká tam na Lukáša pôsobí.

Výpočet

Označme si hmotnosť Lukáša mLukáš, hmotnosť Europy mEuropa a polomer Europy r. Na Zemi váha ukáže
hodnotu mLukáš a na Europe mu ukáže hodnotu κ

g
mLukášmEuropa

r2 (pretože určí gravitačnú silu, ktorou na ňu Lukáš
na Europe pôsobí, a potom ju ešte predelí gravitačným zrýchlením). Chceme určiť, koľkokrát je hodnota na
Europemenšia (resp. hodnota na Zemi väčšia), a teda potrebujeme určiť pomer hodnoty na Zemi a na Europe:

mLukáš
κ
g
mLukášmEuropa

r2
= mLukášgr2
κmLukášmEuropa

= gr2
κmEuropa

.

Môžeme si všimnúť, že tento pomer nie je závislý od Lukášovej hmotnosti, a teda dosadením g = 9,81 m
s2 ,

κ = 6,674 × 10−11 m3

kgs2 , r = 1,56 × 106 m a mEuropa = 4,8 × 1022 kg7 dostaneme, že váha Lukášovi ukázala na
Europe približne 7,45-krát menšiu hodnotu ako na Zemi bez ohľadu na jeho hmotnosť.

4Ak vás zaujíma, ako a prečo vie váha určiť z veľkosti deformácie veľkosť pôsobiacej sily, prečítajte si o tzv. Hookovom zákone
5Kým ešte neexistovali elektrické váhy a hmotnosť ukazovala ručička na otočnej stupnici, riešilo sa toto „predelenie“ určením

vhodnej mierky
6tá bola zistená empiricky (experimentálne)
7údaje boli čerpané z anglickej Wikipédie
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